Amb and Search Search and amb - SICP Comparison Edition" /> 4.3.1   <span style="color:green">Amb and Search</span> <span style="color:blue">Search and amb</span> - SICP Comparison Edition

[1] The idea of amb for nondeterministic programming was first described in 1961 by John McCarthy (see McCarthy 1967).
[2] In actuality, the distinction between nondeterministically returning a single choice and returning all choices depends somewhat on our point of view. From the perspective of the code that uses the value, the nondeterministic choice returns a single value. From the perspective of the programmer designing the code, the nondeterministic choice potentially returns all possible values, and the computation branches so that each value is investigated separately.
[3] One might object that this is a hopelessly inefficient mechanism. It might require millions of processors to solve some easily stated problem this way, and most of the time most of those processors would be idle. This objection should be taken in the context of history. Memory used to be considered just such an expensive commodity. In 1965 a megabyte of RAM cost about $400,000. Now every personal computer has many gigabytes of RAM, and most of the time most of that RAM is unused. It is hard to underestimate the cost of mass-produced electronics.
[4] Automagically: Automatically, but in a way which, for some reason (typically because it is too complicated, or too ugly, or perhaps even too trivial), the speaker doesn't feel like explaining. (Steele 1983, Raymond 1996)
[5] The integration of automatic search strategies into programming languages has had a long and checkered history. The first suggestions that nondeterministic algorithms might be elegantly encoded in a programming language with search and automatic backtracking came from Robert Floyd (1967). Carl Hewitt (1969) invented a programming language called Planner that explicitly supported automatic chronological backtracking, providing for a built-in depth-first search strategy. Sussman, Winograd, and Charniak (1971) implemented a subset of this language, called MicroPlanner, which was used to support work in problem solving and robot planning. Similar ideas, arising from logic and theorem proving, led to the genesis in Edinburgh and Marseille of the elegant language Prolog (which we will discuss in section 4.4). After sufficient frustration with automatic search, McDermott and Sussman (1972) developed a language called Conniver, which included mechanisms for placing the search strategy under programmer control. This proved unwieldy, however, and Sussman and Stallman (1975) found a more tractable approach while investigating methods of symbolic analysis for electrical circuits. They developed a nonchronological backtracking scheme that was based on tracing out the logical dependencies connecting facts, a technique that has come to be known as dependency-directed backtracking. Although their method was complex, it produced reasonably efficient programs because it did little redundant search. Doyle (1979) and McAllester (1978, 1980) generalized and clarified the methods of Stallman and Sussman, developing a new paradigm for formulating search that is now called truth maintenance. Modern problem-solving systems all Many problem-solving systems use some form of truth-maintenance system as a substrate. See Forbus and de Kleer 1993 for a discussion of elegant ways to build truth-maintenance systems and applications using truth maintenance. Zabih, McAllester, and Chapman 1987 describes a nondeterministic extension to Scheme that is based on amb; it is similar to the interpreter described in this section, but more sophisticated, because it uses dependency-directed backtracking rather than chronological backtracking. Winston 1992 gives an introduction to both kinds of backtracking.
4.3.1   Amb and Search Search and amb